
New MongoDB Example
A cool new thing comes with the MBS FileMaker Plugin 12.3 for us: You
can connect in FileMaker to a Mongo DB server and create on this
server databases, collections and documents with various functions,
search in documents and delete them as needed. The special thing
about Mongo DB is that it is not a relational database based on tables
and relations, but its data has a JSON like structure. This allows you to
make queries that were previously not possible due to the restriction of
relationships or table boundaries. So find out who is longer in your
company: the carpet in the warehouse or your trainee.
We add a new example file about Mongo DB to our plugin examples. I
would like to show you this example here. To use this example you can
download the free local community server of Mongo DB and install it on
one of your computers. For my Mac, I can just use homebrew with a
few Terminal commands. To work with the server we need a URI to
locate it. If you also installed the Compass graphics environment when
you installed the server, you can simply get it when you open Compass.

Normally you can reach your new local server under the following URI:
mongodb://localhost:27017

https://www.mbs-plugins.com/archive/2022-07-25/New_MongoDB_Example/monkeybreadsoftware_blog_filemaker

Now you can use the example. The very first thing we want to do in
FileMaker, of course, is to connect to the MongoDB server. To do this,
you can enter the URI in the field that is provided and then click on the
Connect button. This will start the Connection script. This script first
checks if there is already a MongoDB object. If yes, then this object will
be released. After that we create a new MongoDB object with the
function MongoDB.New. With MongoDB.SetURI we set the URI to
establish a connection with MongoDB.Connect. We can now work on
this connection. For example, with MongoDB.DatabasesNames we can
output a list that tells us which databases already exist on the server.
Connection in file MongoDB Blog

Connect us to the Server

Old connections are cleaned up
If [$$MongoDB ≠ ""]

Set Variable [$r ; Value: MBS("MongoDB.Release"; $$MongoDB)]
// Set Variable [$r ; Value: MBS("MongoDB.ReleaseAll")]

End If

Get a new reference number
Set Variable [$$MongoDB ; Value: MBS("MongoDB.New")]
If [MBS("IsError")]

Show Custom Dialog ["Error" ; $$MongoDB]
Exit Script [Text Result:]

End If
Set the URI from the field
Set Variable [$r ; Value: MBS("MongoDB.SetURI"; $$MongoDB; MongoDB::URI)]
If [MBS("IsError")]

Show Custom Dialog ["Error" ; $r]
Exit Script [Text Result:]

End If
Connect to the server
Set Variable [$r ; Value: MBS("MongoDB.Connect"; $$MongoDB)]
If [MBS("IsError")]

Show Custom Dialog ["Error" ; $r]
Else

Show Custom Dialog ["Connection" ; "OK"]
End If
Creating a new database is not an active process in Mongo DB. A
database is created when it is used for the first time. For this reason it
is enough to open a database with MongoDB.OpenDatabase. If the
name has already been used once, the existing database is used,
otherwise a new one is created as soon as the first data is stored in this
database. For MongoDB databases there are three different terms you

https://www.mbsplugins.eu/MongoDBNew.shtml
https://www.mbsplugins.eu/MongoDBSetURI.shtml
https://www.mbsplugins.eu/MongoDBConnect.shtml
https://www.mbsplugins.eu/MongoDBDatabasesNames.shtml
http://www.mbsplugins.eu/MongoDBRelease.shtml
http://www.mbsplugins.eu/MongoDBReleaseAll.shtml
http://www.mbsplugins.eu/MongoDBNew.shtml
http://www.mbsplugins.eu/IsError.shtml
http://www.mbsplugins.eu/MongoDBSetURI.shtml
http://www.mbsplugins.eu/IsError.shtml
http://www.mbsplugins.eu/MongoDBConnect.shtml
http://www.mbsplugins.eu/IsError.shtml
https://www.mbsplugins.eu/MongoDBOpenDatabase.shtml

have to distinguish: Database, Collection and Document. A database
can have several collections. Collections contain the individual data
series called documents. Collections help you to structure your
database. The figure below will help you to distinguish between them.

Documents always belong to a collection, so before we can work with
the data we have to specify which collection we want to work with. To
do this we open the collection with MongoDB.OpenCollection. We can
now enter data into this collection. For this we have the functions
MongoDB.InsertOne. In our example we use it in the script Insert One
to create an entry with a name that we have previously placed in the
intended field.
Set Variable [$r ; Value: MBS("MongoDB.InsertOne"; $
$MongoDB;
JSONSetElement ("{}" ; "Name" ; MongoDB::Name;
JSONString)")]
Data is passed to the function using JSON. So we specify the key Name
and enter the field value as the value.
Of course, we can not only write data, but also read it. The
MongoDB.Find function helps us in this task. Besides the object
reference number, which we have to specify in most MongoDB
functions, we also specify a JSON here that tells us what we are looking
for in the database, whether it is a specific name, a number that is less

https://www.mbsplugins.eu/MongoDBOpenCollection.shtml
https://www.mbsplugins.eu/MongoDBInsertOne.shtml
https://www.mbsplugins.eu/MongoDBInsertOne.shtml
https://www.mbsplugins.eu/MongoDBFind.shtml
https://www.mbsplugins.eu/component_MongoDB.shtml

than a specific value, or a combination of both. We have used some
filtering in the example to show you how this can possibly look. If we
want to get back all documents contained in the collection as result, we
specify an empty JSON. The result is not displayed directly yet, but we
can step through the result set with a cursor (MongoDB.CursorNext)
and combine the single documents e.g. in a text output. If we want to
know how many documents are present in the current collection, we
call the function MongoDB.EstimatedDocumentCount. It returns the
number of existing documents. If you want to change one or more
records, you can use the functions MongoDB.UpdateOne and
MongoDB.UpdateMany. Again, we have a JSON in which we can specify
certain criteria by which the documents will be filtered. There is also a
second JSON in which the update to be made in the document(s) is
described. Set Variable [$r ; Value: MBS("MongoDB.UpdateOne"; $
$MongoDB; JSONSetElement ("{}" ; "Name" ; MongoDB::Name;
JSONString); JSONSetElement ("{}"; "$set"; JSONSetElement ("{}" ;
"Age" ; MongoDB::Age; JSONNumber); JSONObject))] As the names
suggest we can use the function MongoDB.UpdateMany to update
multiple records that match the selector JSON. With
MongoDB.UpdateOne it is the first record in the collection that matches
the criteria in the Selctor JSON. You can also replace whole documents
with documents that may have completely different keys. You can see
this in our example in the script Replace. Here a document that has a
certain name is replaced by a document that does not have the key
name. For example, where the old document still described a human
being, clothes are now described in the same place.
Set Variable [$r ; Value: MBS("MongoDB.ReplaceOne"; $
$MongoDB;
JSONSetElement ("{}" ; "Name" ; MongoDB::Name;
JSONString);
"{\"Typ\": \"clothes\", \"ArtNum\": 1234, \"InStock\": true,
\"Age\": 3}")]
Both documents can coexist in the collection without any problems. This
is what makes MongoDB so flexible. If we now have a document that
describes a person with a name and an age and we have on the other
side a clothing item that is described with an article number and an
age, I can for example determine whether the clothing item is older
than the person by formulating an appropriate query.
If you want to delete documents, we have two functions that delete one
or more documents at the same time. Again, we determine which
records should be deleted using a JSON that gives us the criteria that
the documents should match.
This and more awaits you in our new example. If you are interested,
download the latest plugin version next week (12.4pr1) and try it out.

https://www.mbsplugins.eu/MongoDBCursorNext.shtml
https://www.mbsplugins.eu/MongoDBEstimatedDocumentCount.shtml
https://www.mbsplugins.eu/MongoDBUpdateOne.shtml
https://www.mbsplugins.eu/MongoDBUpdateMany.shtml
https://www.mbsplugins.eu/MongoDBUpdateOne.shtml
https://www.mbsplugins.eu/MongoDBUpdateMany.shtml
https://www.mbsplugins.eu/MongoDBUpdateOne.shtml
https://www.mbsplugins.eu/MongoDBReplaceOne.shtml

I wish you a lot of fun with it.
by Stefanie Juchmes

