
WebHook Introduction
Nowadays we live in a connected world, so web services run on
different computers and sometimes need to notify each other. They
usually do that with sending a HTTP request to a given URL and pass on
some data as part of the URL or e.g. a JSON block as payload.
FileMaker has no built-in web hook feature and with FileMaker Server
you can do some things with DATA API or a custom php script on the
web server part.

Our MBS FileMaker Plugin in version 11.5 comes with a new WebHook
functionality. You can open a receiver to listen on a port for an incoming
request and trigger a script to process the query. Our plugin provides
maximum flexibility as you can create listeners as needed by script and
stop them when the job is done.

Let's say you have a phone system, which can trigger you for a new
incoming call. You configure for each phone an URL to trigger for that
computer and have FileMaker listen on that computer for the given
port. In our examples we use port 9999, but that could be any number
chosen by you between 1024 and 65535. Please don't use ports other
application want to use like port 5003 for FileMaker. If the IP on the
local network for our workstation is 192.168.0.123, we could have the
following URL triggered by the phone system:
http://192.168.0.123:9999/incomingcall
As you see we built an URL with http for the protocol. If needed, we
could do https with TLS v1.2, but that needs a SSL certificate of course.
If you like to simulate this, you could open a browser and enter the URL
or run curl in the Terminal window:
curl -v http://localhost:9999/incomingcall

https://www.mbs-plugins.com/archive/2021-10-28/WebHook_Introduction/monkeybreadsoftware_blog_filemaker
https://www.monkeybreadsoftware.com/filemaker/

Setup Script

Let's get started to receive something in FileMaker. Make sure you have
version 11.5 of our plugin installed, currently in beta testing. Create a
new script to initialize the web hook like this:

Set Variable [$$WebHook ; Value: MBS("WebHook.Create")]
Set Variable [$r ; Value: MBS("WebHook.SetScript"; $$WebHook;
Get(FileName); "WebHookReceived")]
Set Variable [$r ; Value: MBS("WebHook.Listen"; $$WebHook; 9999)]

You create a web hook object with our plugin using the WebHook.Create
function. Then you can configure it. We just set the script to trigger, but
you could also set certificate and key for TLS encryption. Once
everything is setup, we call WebHook.Listen to start the underlaying
socket on port 9999. If that port is not available, we get an error and
may check if we can use another port or close the previous instance still
listening on that port. A port can only be used by one application or
service at a time.

https://www.mbsplugins.eu/WebHookCreate.shtml
https://www.mbsplugins.eu/WebHookSetScript.shtml
https://www.mbsplugins.eu/WebHookListen.shtml
https://www.mbsplugins.eu/WebHookCreate.shtml
https://www.mbsplugins.eu/WebHookListen.shtml

Script Trigger

Next we create a script called "WebHookReceived" to be triggered. This
script should take the reference number for the request and then we
use it to query the URL we received:
Set Variable [$WebRequest ; Value: Get(ScriptParameter)]
Set Variable [$URL ; Value: MBS("WebRequest.GetURL";
$WebRequest)]
Set Variable [$Body ; Value: MBS("WebRequest.GetBody";
$WebRequest; "UTF-8")]
Set Variable [$Headers ; Value: MBS("WebRequest.GetHeaders";
$WebRequest)]
Set Variable [$r ; Value: MBS("WebRequest.Release"; $WebRequest)]

Based on the incoming URL or the payload, we can decide what to do,
e.g. show a card window on the current layout.

Custom response

The example above is based on the plugin accepting the call and
responding directly with an automatic answer, see
WebHook.SetAutoAnswer. If you don't like to answer all requests with
the same automatically answer, you can send a response yourself. For
that we can allow you to leave the connection open when we trigger the
script and you answer yourself. For that we disable auto answer and set
the mode to keep connection open:

enable keep open and disable auto answer, so we can send custom
answer
Set Variable [$r ; Value: MBS("WebHook.SetAutoAnswer"; $$Webhook;
"")]
Set Variable [$r ; Value: MBS("WebHook.SetMode"; $$WebHook; 1)]

Once that happened, we can change our script to send a custom answer
to the other side. In this case we send a HTTP response with status
code 201, our server name and finally a double line ending to mark the
end. Be aware to send this with CRLF as line ending, so we use
Text.ReplaceNewline here:

send HTTP Response here
Set Variable [$text ; Value: "HTTP/1.1 201 Created¶Server: MyServer
1.0¶Connection: close¶Content-Length: 0¶¶"]
Set Variable [$text ; Value: MBS("Text.ReplaceNewline"; $Text; 3)]
Set Variable [$r ; Value: MBS("WebRequest.Send"; $WebRequest;

https://www.mbsplugins.eu/WebRequestGetURL.shtml
https://www.mbsplugins.eu/WebRequestGetBody.shtml
https://www.mbsplugins.eu/WebRequestGetHeaders.shtml
https://www.mbsplugins.eu/WebRequestRelease.shtml
https://www.mbsplugins.eu/WebHookSetAutoAnswer.shtml
https://www.mbsplugins.eu/WebHookSetAutoAnswer.shtml
https://www.mbsplugins.eu/WebHookSetMode.shtml
https://www.mbsplugins.eu/TextReplaceNewline.shtml
https://www.mbsplugins.eu/TextReplaceNewline.shtml
https://www.mbsplugins.eu/WebRequestSend.shtml

$text; "UTF-8")]
we do a little delay to make sure response is sent.
Pause/Resume Script [Duration (seconds): ,1]

Be aware that the script handling this must run within a few seconds
after the request comes in, otherwise the server on the other side may
not wait for your response. For a lot of systems the auto responder is a
convenient way to not run into timeout issues. The plugin acknowledges
that the request was received and you can process the request later
when there is time.

On FileMaker Server

If you run this on FileMaker Server, please be aware that script trigger
won't work. You need to run a scheduled script with calls to
WebHook.Check to process calls. This may be a script running every 10
minutes and then exists after 9:55 minutes. Or maybe this is part of a
bigger script, which first sends a request to a web services then spins
up the web hook to have it receive the answer callback later.

The following example script checks for status of incoming requests 10
times per second to trigger the receiver script for each ID we get:

Loop
 # check for pending requests
 Set Variable [$list ; Value: MBS("WebHook.Check")]
 #
 # loop over pending requests
 Set Variable [$count ; Value: ValueCount($list)]
 Set Variable [$index ; Value: 1]
 If [$index ≤ $count]
 Loop
 Set Variable [$ref ; Value: GetValue($list; $index)]
 Perform Script [Specified: From list ; “WebHookReceived on
server” ; Parameter: $ref]
 #
 # next
 Set Variable [$index ; Value: $index + 1]
 Exit Loop If [$index > $count]
 End Loop
 End If
 #
 Pause/Resume Script [Duration (seconds): ,1]
End Loop

https://www.mbsplugins.eu/WebHookCheck.shtml
https://www.mbsplugins.eu/WebHookCheck.shtml

If you need more, check out the other options we have including RAW
mode, which can help if the data is not a HTTP request, but maybe
some other device with it's own protocol, like a scale to measure your
weight.
These WebHook functions can also help to trigger a script in FileMaker
Pro from a script running on a server, take a call from Claris Connect or
take a call from our own PHP scripts on another computer.
Let us know if you have questions.

https://www.mbsplugins.eu/component_WebHook.shtml

