
Audit with MBS FileMaker Plugin 

How FileMaker Pro can log changes 

Since 2012, the MBS plugin has an audit 
functions. With version 6.5 they got 
much faster and therefore you may 
want to take a closer look on our audit 
functions. In FileMaker Pro, you can use 
them to easily log all changes to the 
database. Later you can inspect who 
changed records and use the log to 
undo actions or display old values. 

Audit with MBS 

We start with a test database. For the example, we take the starter 
solution called event management. The audit function need an AuditLog 
table and a matching layout. Both of these should be available 
somewhere and can be in a different database. The MBS plugin looks 
into the AuditLog layout to determine which fields should be written. 
The records are then written internally using SQL commands. 
Therefore, there must be only a relationship to an AuditLog table, even 
if it is located in a different database. This is quite interesting for 
server-based solutions, if the log is split into several AuditLog tables 
and the relationships define which table logs into which AuditLog table. 

We add fields to the AuditLog table. The following fields are required: 
FieldName, FieldHash, TableName and RecordID. The name for the field 
and the table define the field exactly. We know which record was 
changed via the RecordID and FieldHash is then the hash of the field 
value. The field value can be very long and can, but does not have to be 
written down. 

The following fields can be defined: 
FieldValue, FieldOldValue, FieldType, UserName, IP, CurrentTimestamp, 
TimeStamp, CurrentTime, CurrentDate, Action, CurrentHostTimeStamp, 
PrivilegeSetName, AccountName, LayoutNumber, ApplicationVersion, 
FileName, HostApplicationVersion, HostName, HostIPAddress, 
LayoutName, PageNumber, LayoutTableName, TableID, FieldID, 
ScriptName and WindowName. 

https://www.mbsplugins.de/archive/2017-01-07/Audit_with_MBS_FileMaker_Plugi
http://www.mbsplugins.eu/component_SQL.shtml


In FieldValue, the plugin saves the new value. In the FieldOldValue field, 
it saves the old value of the field. This is, of course, only available if the 
plugin finds the older entry. FieldType saves the type of the field, for 
example text. UserName saves the user name and AccountName the 
current account name. The CurrentTimestamp, CurrentHostTimeStamp, 
TimeStamp, CurrentTime, and CurrentDate fields store all the current 
time and/or current date. Hostname and HostIPAddress define on which 
computer the change was made. LayoutName and LayoutNumber which 
layout was used, WindowName which window. TableID and FieldID store 
the IDs for the table and the field. Later you can then find values by IDs 
even faster. 

Create an Audit table 

So let's put a table called AuditLog and the fields FieldName, FieldHash, 
TableName, RecordID, FieldValue, FieldOldValue, FieldType, UserName, 
IP, CurrentTimestamp, Action, FileName and LayoutName. We also add 
an additional field to EventID. Because we can always save the ID of 
the event and then find the changes for an event. FileMaker 
automatically creates a layout for the new table. This layout is required 
by the current plugin to find the fields in the table. We can later see in 
the layout what was logged. Of course, regular users may not need to 
see the audit table or the layout. 

You can create additional fields in the AuditLog table. For example, a 
LogTime field with the data type time stamp for the current time of 
logging. This field can automatically be filled by FileMaker. You can also 
pass these additional fields later using an audit call, for example, to log 
a variable. 

Audit fields 

In each table, we create an AuditTimeStamp field. This field is 
automatically set by FileMaker to the current time stamp when the 
record changes. If you already have a field with a different name, you 
can also use it and do not need a field with a redundant time stamp. 

We also create a second field called AuditState. This will be a calculated 
value, which needs to be recalculated each time. So please uncheck the 
"Do not replace existing value of field" checkbox. The calculation is the 
call to Audit.Changed. This function has several parameters. First, we 
pass our time stamp, behind the name of the table itself, in this case 
events. Then we can specify fields that should be ignored. We can also 
use field name and | as a separator to fill a field with a given value. So, 
we set the value of the EventID field to the value of the EVENT ID 

http://www.mbsplugins.eu/AuditChanged.shtml


MATCH FIELD field. Finally, we pass the label from the field "Task Label 
Plural" as this field should not be logged. This field is calculated easily 
from the other fields. Thus, the audit call looks like this: 

MBS ("Audit.Changed"; AuditTimeStamp; "Events"; "EventID|" & EVENT 
ID MATCH FIELD; "Task Label Plural"); 

For the other tables, the calls would be: 

MBS ("Audit.Changed", AuditTimeStamp, "Contributors", "EventID|", & 
EVENT ID MATCH FIELD) 
MBS ("Audit.Changed"; AuditTimeStamp; "Tasks"; "EventID|" & EVENT 
ID MATCH FIELD) 
MBS ("Audit.Changed", AuditTimeStamp, "Agenda", "EventID|", & 
EVENT ID MATCH FIELD) 
MBS ("Audit.Changed", AuditTimeStamp, "Guests", "EventID|", & 
EVENT ID MATCH FIELD) 

So the plugin logs all the changes for the events. You can open the 
windows side by side, one with the events layout and one with the 
layout for the AuditLog table. For changes to the portals you have to 
click on a free space in the event to write the changes to the record. 
This writes the changes for all portals together. In the AuditLog, we see 
many new entries for the new records. 

Positive or negative? 

There are two Audit.Changed commands in the plugin. Audit.Changed 
takes the field names that are not to be observed. On the other hand, 
Audit.Changed2 is different and takes a positive list of fields. Basically, 
Audit.Changed2 is faster because it does not have to query which fields 
are available. Form fields or unsaved calculations are not monitored by 
default, since these are easy to recalculate. 

With the Audit.SetIgnoreCalculations function, you can completely 
disable the monitoring of all calculation fields. With 
Audit.SetIgnoreSummaryFields, you can ignore the summary fields. Or 
with Audit.SetIgnoreUnderscoreFieldNames all fields with underline at 
the beginning of the word. You can also use 
Audit.SetIgnoredFieldNames to globally specify a list of field names for 
fields that you want to ignore. by default the plugin ignores the 
AuditState and AuditTimeStamp fields. 

http://www.mbsplugins.eu/AuditChanged.shtml
http://www.mbsplugins.eu/AuditChanged.shtml
http://www.mbsplugins.eu/AuditChanged.shtml
http://www.mbsplugins.eu/AuditChanged.shtml
http://www.mbsplugins.eu/AuditChanged.shtml
http://www.mbsplugins.eu/AuditChanged.shtml
http://www.mbsplugins.eu/AuditChanged.shtml
http://www.mbsplugins.eu/AuditChanged2.shtml
http://www.mbsplugins.eu/AuditChanged2.shtml
http://www.mbsplugins.eu/AuditSetIgnoreCalculations.shtml
http://www.mbsplugins.eu/AuditSetIgnoreSummaryFields.shtml
http://www.mbsplugins.eu/AuditSetIgnoreUnderscoreFieldNames.shtml
http://www.mbsplugins.eu/AuditSetIgnoredFieldNames.shtml


Display the audit 

We can display the audit data for the record. Perhaps not for every user, 
but the display is always useful as a change log. To do this, create a 
relationship between Events::EVENT ID MATCH FIELD and 
AuditLog::EventID in the relationship diagram. 

Now create space in the event layout and create a portal for the 
AuditLog table. If it is not found in the reference records pop-up menu, 
you have created the relationship above incorrectly. You could sort the 
fields down by CurrentTimeStamp. It is enough to take the fields 
FieldName, FieldValue and perhaps UserName. 

Audit on deletion 

If you want to log the deletion, you have two options. Either you let the 
user delete only by script and you always notify the plugin before 
deleting, or you use the security settings in FileMaker for a delete 
trigger. 

The call from the plugin would then be via the Audit.Delete function: 

MBS ("Audit.Delete"; MyTable::AuditTimeStamp; "MyTable") 

The time stamp is passed, but not really used. Instead of using 
MyTable, you specify the current table from the current record. The 
plugin logs the record as with the other calls, so all the changes to the 
fields if needed and then an entry for deletion. You can of course do this 
in a script shortly before the delete command (with variable set). 

Test users 

First we need a test user to delete. In the Security dialog, we create a 
new user. We create a new set of permissions for this user. Best way is 
to duplicate and customize the permissions from the data input. In the 
settings for the calculation, there is a pop-up menu for records in the 
upper left corner. There, select "Custom privileges ...". A suitable dialog 
appears, where you can set the permissions for each table. For each 
table, select "Limited ..." instead of Yes. A new dialog box appears for 
the calculation of the limitation. Here, please insert the plugin call, for 
example for the events table: 

MBS ("Audit.Delete", AuditTimeStamp, "Events") 

http://www.mbsplugins.eu/AuditDelete.shtml
http://www.mbsplugins.eu/AuditDelete.shtml
http://www.mbsplugins.eu/AuditDelete.shtml


For testing, we are building a script called login. This script gets only 
one command: Re-Login [With dialog: On]. If everything works out, you 
can use the new script to log in again with the new user. There you 
create a new data record. Make sure you commit some changes. You 
will see the recording in a second window with the AuditLog table. If 
you delete the record now, the calculation will be executed and the 
record should be marked as deleted. Please note that FileMaker first 
performs the calculation and then displays a dialog. If the user presses 
Cancel there, the plugin has already set an entry and the record still 
remains undeleted. 

Experience 

Many plugin users use audit. Because FileMaker often stores changes, 
each database should have an audit. Easily a record is changed or 
deleted and no one knows later who has made what and why. In 
addition, you can offer an undo feature, if you can find what was 
previously in a field. 

The table with AuditLog is growing quickly, because a record is created 
for each change. However, you can easily rotate the table, for example 
change it monthly. The AuditLog table and layout must be available only 
in an open file. Therefore, it is recommended to put the AuditLog table 
in another database file. You can even have different audit databases 
for different files and separate the log data. Thus, a table can log into 
an audit file and another table logs to another file. For this, however, 
the relationships must be true, so that under the name AuditLog is a 
reference in the relationships that point to the corresponding table. 
Those audit log tables have of course different names. 

The whole auditing works at best, when the users don't know about it. 
If an employee then makes a mistake, a supervisor can undo the 
change. Or if the data does not agree, who has done what and when. 

In version 6.5, we have significantly improved SQL statements for 
audit, so the new plugin is much faster in the network. For each 
change, we need to look for old entries in the AuditLog and see if the 
values have changed.  
Give it a try!

http://www.mbsplugins.eu/component_SQL.shtml

