
FileMaker and JavaScript - the perfect
combination

In the newest version of the MBS FileMaker Plugin 10.0 we offer
functions for the use of JavaScript without the use of a web viewer. See
WebView.RunJavaScript and WebView.Evaluate to run or evaluate
JavaScript in a web viewer. The new JavaScript functions increase your
functionality in FileMaker enormously. You can write your own
Javascript, use a JavaScript snipped that fix a problem or fast up a
process of your solution. In this article I want to show you how to use
JavaScript code in FileMaker: Setting values in the JavaScript with
functions in FileMaker, add functions and run them.
If you have a problem that you want to solve, you don't have to
reinvent the wheel again and again. Perhaps someone has already
found a solution to this problem and shared his solution on the Internet.
So start a search engine and try your luck. Special thanks to André
Rinas and his website andrerinas.de that supply very useful JavaScript
snippets to everyone. This example is based on one of this JavaScript
codes.

https://www.mbs-plugins.com/archive/2020-02-03/FileMaker_and_JavaScript_-_the
https://www.mbs-plugins.com/archive/2020-02-03/FileMaker_and_JavaScript_-_the
https://www.monkeybreadsoftware.com/filemaker/
https://www.mbsplugins.eu/WebViewRunJavaScript.shtml
https://www.mbsplugins.eu/WebViewEvaluate.shtml
https://www.mbsplugins.eu/component_JavaScript.shtml
https://www.andrerinas.de/

In the example I show you a JavaScript that calculates the difference
between two geo coordinates. We create a new FileMaker table with 5
fields. Two fields contains the longitude and latitude of the first
coordinate, two other fields store the longitude and latitude of the other
coordinate. The last field is a result field, that shows us the difference
between the coordinates after we calculate it. Then we start with the
JavaScript code. Javascript is a programming language that was
develop as an extension of HTML and CSS on the Internet. But is
finding its way into more and more domains.
For the calculation we need the longitude and latitude in radiance and
not in the unit of degree. Because of this we need a function that
convert between this both units. The formula for the calculation is y = x
* Pi / 180.

A JavaScript function for that looks like this:

function DegToRad(deg) {
 return deg * Math.PI / 180;
}

We need the keyword “function” to say that we defined a function. Then
we need a function name. Function names in Javascript are only one
string and can contains numbers. In the brackets we defined the
parameters that we need in this function. We set them in the function
call. The calculation is surrounded by curly brackets. The keyword
return defines that the value of this calculation is the result of the
function and returns the value. Math.Pi is a function that defines Pi, so
we use it here to do the math.
Then we can write the function for the distance calculation:

function distance(lat1, lon1, lat2, lon2) {
 var R = 6371; // The earth's radius in km

 lat1 = DegToRad(lat1);
 lat2 = DegToRad(lat2);
 lon1 = DegToRad(lon1);
 lon2 = DegToRad(lon2);

 var x = (lon2 - lon1) * Math.cos((lat1 + lat2) / 2);
 var y = (lat2 - lat1);
 var d = Math.sqrt(x * x + y * y) * R;
 return d;
}

https://www.mbsplugins.eu/component_JavaScript.shtml

We have a function with four input parameters. Thats are the latitudes
and longitudes of the coordinates. For each of this values we call the
converting function and save the returned value in the variable again.
Because this variables are defined as parameters of the function, we
don’t need to declare them again. All other variables x, y and d are
declared with the keyword “var” in front of the variable name. The
variable R defines the radius of the earth. Variables can assigned with
calculated values similar to FileMaker. When using variables we must
take care of the fact that JavaScript is a case-sensitive language. A and
a would be two different variables!

After we finish the script we want to look at the possibilities of using
this in FileMaker. As we want to work with a JavaScript snippet, we
create a new JavaScript environment with the "JS.New" function in the
MBS Plugin. As result we get the reference number that we save in the
variable $js. Then we want to evaluate our JavaScript snippet with the
help of the “JS.EvaluateToString” function. In the parameters of the
function we set $js and our JavaScript.

Set Variable [$r ; Value: MBS("JS.EvaluateToString"; $JS;
“function DegToRad(deg)
{
 return deg * Math.PI / 180;
}

function distance(lat1, lon1, lat2, lon2) {
 var R = 6371; // The earth's radius in km

 lat1 = DegToRad(lat1);
 lat2 = DegToRad(lat2);
 lon1 = DegToRad(lon1);
 lon2 = DegToRad(lon2);

 var x = (lon2 - lon1) * Math.cos((lat1+lat2) / 2);
 var y = (lat2 - lat1);
 var d = Math.sqrt(x*x + y*y) * R;
 return d;
}

distance(50.73743, 7.0982068, 50.61, 7.2025)")]

Then we have the result in the variable $r. The result is a string. If we
want the result as a JSON object we call the “JS.Evaluate” function in
place of the “JS.EvaluateToString” function with the same parameters.
In the end we release the JavaScript environment.

https://www.mbsplugins.eu/JSNew.shtml
https://www.mbsplugins.eu/JSEvaluateToString.shtml
https://www.mbsplugins.eu/JSEvaluateToString.shtml
https://www.mbsplugins.eu/JSEvaluate.shtml
https://www.mbsplugins.eu/JSEvaluateToString.shtml

But it would be very annoying if we have to change the string of the
JavaScript for each dataset to work with different values. We don't have
to, because we can set and read variables in the JavaScript
environment with the MBS Plugin functions.
Before we call one of the evaluation functions we set the variables like
that:

Set Variable [$r ; Value: MBS("JS.SetGlobalPropertyValue";
$js; "lat1"; 50.73743)]
Set Variable [$r ; Value: MBS("JS.SetGlobalPropertyValue";
$js; "lon1"; 7.0982068)]
Set Variable [$r ; Value: MBS("JS.SetGlobalPropertyValue";
$js; "lat2"; 50.61)]
Set Variable [$r ; Value: MBS("JS.SetGlobalPropertyValue";
$js; "lon2"; 7.2025)]

Then we Change the last line of our Javascript to:

distance(lat1, lon1, lat2, lon2)

If we want to avoid to set this huge part of script in every evaluation
function, we can add the DagToRad function and the distance function
to the environment of the JavaScript. Because of this we only need to
call the distance function with the right parameters. That is easier for
debugging, too.

Set Variable [$js ; Value: MBS("JS.New")]
Set Variable [$r ; Value: MBS("JS.AddFunction"; $js;
"DegToRad"; "function(deg) { return deg * Math.PI /
180; }")]
Set Variable [$r ; Value: MBS("JS.AddFunction"; $js;
"distance"; "function(lat1, lon1, lat2, lon2)
{
 lat1 = DegToRad(lat1);
 lat2 = DegToRad(lat2);
 lon1 = DegToRad(lon1);
 lon2 = DegToRad(lon2);
 var R = 6371;
 var x = (lon2-lon1) * Math.cos((lat1+lat2)/2);
 var y = (lat2-lat1); var d = Math.sqrt(x*x + y*y) * R;
 return d;
}")]

Go to Record/Request/Page [First]
Loop

https://www.mbsplugins.eu/JSSetGlobalPropertyValue.shtml
https://www.mbsplugins.eu/JSSetGlobalPropertyValue.shtml
https://www.mbsplugins.eu/JSSetGlobalPropertyValue.shtml
https://www.mbsplugins.eu/JSSetGlobalPropertyValue.shtml
https://www.mbsplugins.eu/JSNew.shtml
https://www.mbsplugins.eu/JSAddFunction.shtml
https://www.mbsplugins.eu/JSAddFunction.shtml

 Set Variable [$lat1 ; Value: MBS("JSON.CreateNumber";
GetAsNumber(distance::lat1))]
 Set Variable [$lon1 ; Value: MBS("JSON.CreateNumber";
GetAsNumber(distance::lon1))]
 Set Variable [$lat2 ; Value: MBS("JSON.CreateNumber";
GetAsNumber(distance::lat2))]
 Set Variable [$lon2 ; Value: MBS("JSON.CreateNumber";
GetAsNumber(distance::lon2))]
 Set Variable [$res ; Value: MBS("JS.CallFunction"; $js;
"distance"; $lat1; $lon1; $lat2; $lon2)]
 Set Field [distance::distance; $res]
 Go to Record/Request/Page [Next ; Exit after last: On]
End Loop
Set Variable [$r ; Value: MBS("JS.Free"; $js)]

I hope that you like our new JavaScript functions. I wish you lots of fun
with it. If you have any questions, please do not hesitate to contact us.
by Stefanie Juchmes

https://www.mbsplugins.eu/JSONCreateNumber.shtml
https://www.mbsplugins.eu/JSONCreateNumber.shtml
https://www.mbsplugins.eu/JSONCreateNumber.shtml
https://www.mbsplugins.eu/JSONCreateNumber.shtml
https://www.mbsplugins.eu/JSCallFunction.shtml
https://www.mbsplugins.eu/JSFree.shtml
https://www.mbsplugins.eu/component_JavaScript.shtml

