
How to use XL functions with MBS FileMaker Plugin

First when you plan to use the XL functions, be aware that you will need
the license for our MBS plugin. In addition you need licenses for the
LibXL library. Our plugin uses this library to actually perform the
functions. LibXL is sold separately for $199 per platform and you only
buy one license for you as the developer, independent of the number of
clients.

Initialize

Before using the XL functions, it is important to initialize the XL
functions. Best practice is to check result of MBS("XL.IsInitialized")
function. If result is not 1, you need to initialize. For that you first need
to locate the libxl files. Our examples include library files for Mac and
Windows. We have libxl.dylib on Mac for 32 and 64 bit in one file. For
Windows libxl.dll is the 32bit and libxl64.dll is the 64bit file. On Windows
you can pass path to libxl.dll and if FileMaker is running as 64bit
application, the plugin will add the 64 automatically and find the 64bit
library. The example databases find the library in the same folder as the
example database automatically. On a Server you normally copy the libxl
files to the server and hard code the native path, e.g. "/Libary/FileMaker
Server/libxl.dylib". So the initialization can look like this:

If [MBS("XL.IsInitialized") ≠ 1]
 Set Variable [$r; Value:MBS("XL.Initialize"; "/Library/FileMaker
Server/libxl.dylib")]
End If

Create book

Next we have to create a new book. The plugin uses reference numbers
to handle several books in memory at the same time. It is important you
reference your book with a variable in the whole script and release it on
the end. To create a workbook, please call XL.NewBook function. Here
you need to decide if you plan to save later as XML based or binary excel
file. We pass 0 for the normal xls file format:

Set Variable [$book; Value:MBS("XL.NewBook"; 0)]

After we got our book, we add a sheet labeled "Addresses". We get back
the sheet reference number which is zero for first sheet:

Set Variable [$sheet; Value:MBS("XL.Book.AddSheet"; $book;
"Addresses")]

https://www.mbsplugins.de/archive/2015-02-09/How_to_use_XL_functions_with_M
http://www.plimus.com/jsp/redirect.jsp?contractId=2284940&referrer=MonkeybreadSoftware
http://www.plimus.com/jsp/redirect.jsp?contractId=2284940&referrer=MonkeybreadSoftware
http://www.mbsplugins.eu/XLIsInitialized.shtml
http://www.mbsplugins.eu/XLIsInitialized.shtml
http://www.mbsplugins.eu/XLInitialize.shtml
http://www.mbsplugins.eu/XLNewBook.shtml
http://www.mbsplugins.eu/XLNewBook.shtml
http://www.mbsplugins.eu/XLBookAddSheet.shtml

Write data

Our main loop here loops over the records in our test table. Starting with
first record we move one row at a time and one record a time. Inside the
loop we set cell text for each cell in current row and fill them with values
from the record. As you see we have to pass book reference number,
sheet number, row number and column indexes. We define the columns
ourself here.

Go to Record/Request/Page [First]
Loop
 Set Variable [$r; Value:MBS("XL.Sheet.CellWriteText"; $book;
$sheet; $row; 0; Export records::First Name)]
 Set Variable [$r; Value:MBS("XL.Sheet.CellWriteText"; $book;
$sheet; $row; 1; Export records::Last Name)]
 Set Variable [$r; Value:MBS("XL.Sheet.CellWriteText"; $book;
$sheet; $row; 2; Export records::Street)]
 Set Variable [$r; Value:MBS("XL.Sheet.CellWriteText"; $book;
$sheet; $row; 3; Export records::Zip)]
 Set Variable [$r; Value:MBS("XL.Sheet.CellWriteText"; $book;
$sheet; $row; 4; Export records::City)]
 Set Variable [$r; Value:MBS("XL.Sheet.CellWriteText"; $book;
$sheet; $row; 5; Export records::Country)]
 Set Variable [$r; Value:MBS("XL.Sheet.CellWriteText"; $book;
$sheet; $row; 6; Export records::Phone)]
 Go to Record/Request/Page [Next; Exit after last]
 Set Variable [$row; Value:$row + 1]
End Loop

Finish

On the end, we save to a container. For that we use the Set Field script
step. the plugin function XL.Book.Save returns the container value with
the Excel file inside. We pass a file name for the container to give it a
name which FileMaker uses to export the field content later.

Set Field [Export records::File; MBS("XL.Book.Save"; $book; "test.xls")]

Finally we have to release memory and close book. So the
XL.Book.Release will clear memory:

Set Variable [$r; Value:MBS("XL.Book.Release"; $book)]

http://www.mbsplugins.eu/XLSheetCellWriteText.shtml
http://www.mbsplugins.eu/XLSheetCellWriteText.shtml
http://www.mbsplugins.eu/XLSheetCellWriteText.shtml
http://www.mbsplugins.eu/XLSheetCellWriteText.shtml
http://www.mbsplugins.eu/XLSheetCellWriteText.shtml
http://www.mbsplugins.eu/XLSheetCellWriteText.shtml
http://www.mbsplugins.eu/XLSheetCellWriteText.shtml
http://www.mbsplugins.eu/XLBookSave.shtml
http://www.mbsplugins.eu/XLBookSave.shtml
http://www.mbsplugins.eu/XLBookRelease.shtml
http://www.mbsplugins.eu/XLBookRelease.shtml

More?

This is of course a very easy example. It does not create fonts or
formats. Maybe you want to check other example databases coming with
plugin if you like to learn how to create formats, fonts and add images to
Excel files.

